Upper bounds on the rate of quantum ergodicity

نویسنده

  • Roman Schubert
چکیده

We study the semiclassical behaviour of eigenfunctions of quantum systems with ergodic classical limit. By the quantum ergodicity theorem almost all of these eigenfunctions become equidistributed in a weak sense. We give a simple derivation of an upper bound of order |ln ~|−1 on the rate of quantum ergodicity if the classical system is ergodic with a certain rate. In addition we obtain a similar bound on transition amplitudes if the classical system is weak mixing. Both results generalise previous ones by Zelditch. We then extend the results to some classes of quantised maps on the torus and obtain a logarithmic rate for perturbed cat-maps and a sharp algebraic rate for parabolic maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Rate of Quantum Ergodicity on hyperbolic Surfaces and Billiards

The rate of quantum ergodicity is studied for three strongly chaotic (Anosov) systems. The quantal eigenfunctions on a compact Riemannian surface of genus g = 2 and of two triangular billiards on a surface of constant negative curvature are investigated. One of the triangular billiards belongs to the class of arithmetic systems. There are no peculiarities observed in the arithmetic system conce...

متن کامل

Quantum Unique Ergodicity for Parabolic Maps

We study the ergodic properties of quantized ergodic maps of the torus. It is known that these satisfy quantum ergodicity: For almost all eigenstates, the expectation values of quantum observables converge to the classical phase-space average with respect to Liouville measure of the corresponding classical observable. The possible existence of any exceptional subsequences of eigenstates is an i...

متن کامل

Quantum Unique Ergodicity for Maps on the Torus

When a map is classically uniquely ergodic, it is expected that its quantization will posses quantum unique ergodicity. In this paper we give examples of Quantum Unique Ergodicity for the perturbed Kronecker map, and an upper bound for the rate of convergence.

متن کامل

Upper Bounds for Quantum Dynamics Governed by Jacobi Matrices with Self-similar Spectra

We study a class of one-sided Hamiltonian operators with spectral measures given by invariant and ergodic measures of dynamical systems of the interval. We analyse dimensional properties of spectral measures, and prove upper bounds for the asymptotic spread in time of wavepackets. These bounds involve the Hausdorr dimension of the spectral measure, multiplied by a correction calculated from the...

متن کامل

Logarithmic speeds for one-dimensional perturbed random walk in random environment

We study the random walk in random environment on Z+ = {0, 1, 2, . . .}, where the environment is subject to a vanishing (random) perturbation. The two particular cases that we consider are: (i) random walk in random environment perturbed from Sinai’s regime; (ii) simple random walk with random perturbation. We give almost sure results on how far the random walker is from the origin, for almost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005